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Abstract

In the framework of the cellular bifurcation theory, we investigate the effect of distributed and/or localized imper-

fections on the buckling of long cylindrical shells under axial compression. Using a double scale perturbative approach

including modes interaction, we establish that the evolution of amplitudes of instability patterns is governed by a non-

homogeneous second order system of three non-linear complex equations. The localized imperfections are included by

employing jump conditions for their amplitude and permitting discontinuous derivatives. By solving these amplitude

equations, we show the influence of distributed and/or localized imperfections on the reduction of the critical load. To

assess the validity of the present method, our results are compared to those given by two finite element codes.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In this paper, we present a semi-analytical method to compute the reduction of the buckling load of

cylindrical shells under axial compression in presence of distributed and/or localized imperfections by

coupling a double scale asymptotic analysis in the axial direction and a Fourier harmonic formulation using

only three modes in the circumferential direction.

The buckling phenomena of imperfect cylindrical shells is one of the most challenging problems of the

theory of elastic stability. A considerable amount of research has been undertaken to clarify this problem.

A very useful bibliography can be found in the works of Arbocz et al. (1987), Brush and Almroth (1975),
Budiansky and Hutchinson (1966), Bushnell (1985), Dubas and Vandepite (1987), Hunt and Neto (1991),

Yamada and Croll (1999) and Yamaki (1984).
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In the post-buckling analysis of structures with a large ratio aspect, the instability patterns are often

featured by a cellular (or diamond) shape with a large number of cells (Wesfreid and Zaleski, 1984). In the

case of cellular instability in an unbounded domain, the linear analysis leads to a continuous spectrum. The

classical stability theory (Budiansky, 1974; Koiter, 1945; Potier-Ferry, 1987; Thompson and Hunt, 1973)
can be applied provided that, at the bifurcation load, the eigenspace is of finite dimension: in this case, the

Lyapounov–Schmidt method gives an algebraic equation which leads to a reduction of critical load pro-

portional to ða0Þ2=3 in presence of a distributed imperfection of amplitude a0. However, in the case of
cellular bifurcation, the buckling modes are nearly coincident and the number of modes is large.

Thus the classical algebraic amplitude equation is replaced by a complex differential equation which

permits to account for the spatial variations of the amplitude of the post-buckling patterns (Newell and

Whitehead, 1969; Segel, 1969). The localized imperfection sensitivity was studied theoretically via several

asymptotic analysis (Abdelmoula et al., 1992; Amazigo et al., 1970; Amazigo and Fraser, 1971; Damil and
Potier-Ferry, 1992). In their work, Amazigo et al. (1970) have established for a beam buckling problem that

the first derivative of the amplitude of buckling pattern is discontinuous in the region where the localized

imperfection is significant and the reduction of critical load follows a linear law.

In an earlier paper Jamal et al. (1999) have studied the effect of localized imperfection on the buckling of

long cylindrical shells under axial compression by using a double scale perturbative method including

modal patterns that interact. We have shown that the evolution of amplitudes of buckling patterns is

governed by three coupled non-linear differential equations with discontinuous derivatives in the region

where the localized imperfections are significant. We have also proved that the reduction of critical load
follows a two-third power law (i.e. proportional to ðalÞ2=3, where al is the amplitude of localized imper-
fection).

The aim of this work is to extend the previous procedure, as in Jamal et al. (1999), to study the stability of

long cylindrical shells subjected to an axial compression under the presence of both distributed and lo-

calized imperfections. Following the same method as in Jamal et al. (1999), a second order differential

system of non-homogeneous coupled non-linear equations with discontinuous derivatives is found. The

influence of these two types of imperfections and their interaction is studied. The problem is reduced to

numerically solving three non-homogenous, coupled non-linear equations.

2. Post-buckling problem for imperfect cylindrical shells

We consider a long circular cylindrical shell of radius, R, length, L and thickness, h, which is made of an
homogeneous, isotropic elastic material with Young�s modulus, E and Poisson�s ratio, m; it is subjected to an
axial compressive load P . The coordinate system is shown in Fig. 1 and the displacement components will
be denoted by u, v and w. Within the Donnell theory and if the pre-buckling rotations are neglected, in the
presence of an initial displacement dðx; yÞ, the transverse displacement wðx; yÞ and the additional stress
function /ðx; yÞ are solutions of

k2r4wþ k
o2w
ox2

�
þ o2d

ox2

�
� q

o2/
ox2

¼ ½wþ d;/� ð1Þ

r4/ þ q
o2w
ox2

¼ � 1
2
½wþ d;wþ d� ð2Þ

where k ¼ P=Eh is the load parameter, k2 ¼ h2=12ð1� m2Þ and q ¼ 1=R is the shell curvature. The stress
function / is related to the resultant stress as follows:
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Nx ¼ Eh
o2/
oy2

; Ny ¼ Eh
o2/
ox2

; Nxy ¼ �Eh
o2/
oxoy

ð3Þ

r4 denotes the biharmonic operator, and ½	; 	� is the usual bracket operator:

½g; f � ¼ o2g
ox2

o2f
oy2

þ o2g
oy2

o2f
ox2

� 2 o2g
oxoy

o2f
oxoy

ð4Þ

We denote the initial imperfection as follows:

dðx; yÞ ¼ alglðx; yÞ þ argrðx; yÞ ð5Þ
where ai and gi are the amplitude and the shape of the localized (i ¼ l) or the distributed (i ¼ r) imper-
fections. In addition, we suppose that glðx; yÞ is rapidly reducing for large jxj (Fig. 1b). Within the standard
linear theory, the critical value of the load k is characterized by the existence of a buckling mode ðw;/Þ,
which is the solution of the linearized equations without initial imperfections. Because the aspect ratio is

large, the boundary conditions at the ends of the shell are replaced by the requirement of a harmonic

behaviour in the x-direction. The whole buckling modes can be expressed as:

w ¼ A expðicxÞ cosðbcyÞ þ c:c: ð6Þ

/ ¼ qA

c2ð1þ b2Þ2
expðicxÞ cosðbcyÞ þ c:c: ð7Þ

k ¼ k2c2ð1þ b2Þ2 þ q2

c2ð1þ b2Þ2
ð8Þ

where A is a complex constant, bc ¼ qn, n is the wave number in the circumferential direction, b is
the modal aspect ratio (axial/circumferential wavelength), and c.c. denotes the complex conjugate. The

(a) (b)

Fig. 1. (a) Geometrical description, (b) localized imperfection.
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minimization of (8) gives the classical critical load kc ¼ 2qk. All the modes corresponding to this load are
those on the Koiter circle (Fig. 2). The relation: c2ð1þ b2Þ2 ¼ q=k is the required condition for the mode (6)
to be on the Koiter circle.

3. Three coupled amplitude equations: post-buckling analysis

We solve the non-linear differential problem (Eqs. (1) and (2)) by using a double scale perturbation

analysis (Newell and Whitehead, 1969; Segel, 1969). The expansion parameter g is connected to the am-
plitudes of imperfection al and ar (see Damil and Potier-Ferry, 1992) by:

in the case of distributed imperfection

g ¼ ðarÞ1=2 ð9Þ
and in the case of localized imperfection

g ¼ ðalÞ2=3 ð10Þ
To account for both distributed and localized imperfections, the two small parameters ar and al are

replaced by three parameters t1, t2 and g:

ar ¼ t1g2 ð11Þ
and

al ¼ t2g3=2 ð12Þ
where only g is small. If t1 ¼ 1, t2 represents a ratio between the two types of imperfections:

t2 ¼
al

ðarÞ3=4
ð13Þ

If t2 is large (respectively small), the only localized (respectively distributed) imperfection is significant. If t2
is of order of unity, both imperfections must be taken into account. In order to obtain not only periodic

solutions, we use the classical double scale expansion method to analyse cellular bifurcation (Newell and

Whitehead, 1969; Potier-Ferry, 1983; Segel, 1969). Following the same method as in Jamal et al. (1999), we
introduce the slow space variable X which is connected to the rapid variable x by

X ¼ g1=2x ð14Þ

 

 

modeA

modeC

modeB

Fig. 2. The Koiter circle.
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We assume that the unknown

u ¼ ðw;/Þ ð15Þ

is a function of the three ‘‘independent’’ variables X , x, y. According to the classical rule within the double
scale expansion method, the following identities hold (for n ¼ 1; 2; . . .):

om

oxm
!
Xm
p¼0

Cp
mgðm�pÞ=2 op

oxp
om�p

oXm�p
; Cp

m ¼ m!
p!ðm� pÞ! ð16Þ

where o0=oX 0 ¼ o0=ox0 ¼ 1. By employing the classical rule, the unknown u and the load parameter k are
searched in series expansion form with respect to g:

uðx;X ; yÞ ¼ gu1ðx;X ; yÞ þ g3=2u3=2ðx;X ; yÞ þ g2u2ðx;X ; yÞ þ 	 	 	 ð17Þ

k � kc ¼ gk1 þ g3=2k3=2 þ g2k2 þ 	 	 	 ð18Þ

Substituting (16)–(18) into the equilibrium equations (1) and (2), we find the following equations in terms

of the first three orders g, g3=2, g2:

Lku1 ¼ 0 ð19Þ

Lku3=2 ¼ F3=2 þ Gl ð20Þ

Lku2 ¼ F2 þ Gr ð21Þ

where Gr and Gl are expressed as:

Gr ¼ �kct1
o2grðx;yÞ

ox2

0

� �
ð22Þ

Gl ¼ �kc
o2glðx;yÞ

ox2

0

� �
ð23Þ

The same linear operator Lk is employed for the three orders. It is written in the following form:

Lkð	Þ ¼
k2r4 	 þkc o2	

ox2 �q o2	
ox2

q o2	
ox2 r4	

" #
ð24Þ

The right-hand sides (20) and (21) depend on the deflections and stress components wi and /i (i ¼ 1, 3/2).
The expressions of F3=2 and F2 are functions of u1 and u3=2. The vectors Gl and Gr, appearing respectively in
Eqs. (20) and (21), are due to the shape of the localized and distributed imperfections.
Following the same procedure as in Jamal et al. (1999), we search for the perturbative equations (19)–

(21), solutions taking into account mode interactions. Hence the solution of the first-order equation (19) is

taken in the form:

u1 ¼ AðX Þ expðicxÞ cos bcy þ BðX Þ expðicð1þ b2ÞxÞ þ CðX Þ expðib2cxÞ cos bcy þ c:c:
A1ðX Þ expðicxÞ cos bcy þ B1ðX Þ expðicð1þ b2ÞxÞ þ C1ðX Þ expðib2cxÞ cos bcy þ c:c:

� �
ð25Þ

where A1 ¼ kA, B1 ¼ kB, C1 ¼ kC. All these three modes appear on the Koiter circle, as shown in Fig. 2. At
this stage, the complex amplitudes AðX Þ, BðX Þ and CðX Þ are arbitrary functions of the slow variable X .
With this u1, the Eq. (20) contains no secular terms and its solution is given by:
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u3=2 ¼
0

dðX Þ expðicxÞ cos bcy þ eðX Þ expðicð1þ b2ÞxÞ þ f ðX Þ expðib2cxÞ cos bcy þ c:c:

8<
:

9=
;þ ul3=2 ð26Þ

where

dðX Þ ¼ � i2kð1� b2Þ
cð1þ b2Þ

A0ðX Þ; eðX Þ ¼ i2k

cð1þ b2Þ
B0ðX Þ; f ðX Þ ¼ � i2kð1� b2Þ

cð1þ b2Þ
C0ðX Þ ð27Þ

and ul3=2 account for the solution due to localized imperfections. The �prime� denotes a differentiation with
respect to the slow variable X . The operator Lk is singular. Hence, the non-homogeneous equation (21) has

a solution if only if its right-hand side satisfies the solvability conditions

hF2 þ Gr; v�i i ¼ 0 i ¼ 1; 2; 3 ð28Þ

where the vectors v�i (i ¼ 1, 2, 3) belong to the kernel of the adjoint operator L�
k of Lk. Applying these

solvability conditions and returning to the unscaled amplitudes aðxÞ ¼ gAðxÞ, bðxÞ ¼ gBðxÞ, cðxÞ ¼ gCðxÞ
and with an unscaled variable x, we obtain the following three non-homogeneous coupled non-linear
second order differential equation satisfied by the real amplitudes (for xP 0 in the case of only symmetric

solutions):

8k2ð1� b2Þ2 d
2aðxÞ
dx2

þ 2ðk � kcÞaðxÞ þ 6qb2bðxÞcðxÞ ¼ �2arkcda ð29Þ

8k2ð1� b2Þ2 d
2bðxÞ
dx2

þ 2ðk � kcÞð1þ b2Þ2bðxÞ þ 3qb2cðxÞaðxÞ ¼ �2arkcð1þ b2Þ2db ð30Þ

8k2ð1� b2Þ2 d
2cðxÞ
dx2

þ 2ðk � kcÞb4cðxÞ þ 6qb2aðxÞbðxÞ ¼ �2arkcb4dc ð31Þ

Here the right-hand sides of (29)–(31) account for distributed imperfections having the following shape:

grðx; yÞ ¼ da cos cx cos bcy þ db cos cð1þ b2Þxþ dc cos b
2cx cos bcy ð32Þ

where da, db and dc are coefficients linked by the relation da þ db þ dc ¼ 1. For simplicity, we limit ourselves
to the three mode imperfections (32), but the analysis can be extended to any imperfection shape: indeed,

because of Eq. (28), an imperfection that is orthogonal to these modes, does not modify the amplitude

equations (29)–(31).

Hence Eqs. (29)–(31) govern the evolution of the modulated amplitudes aðxÞ, bðxÞ and cðxÞ which take
into account the effect of distributed imperfections.

The effects of localized imperfections are now taken into account solving (20). The solution ul3=2 in (26)
accounting for localized imperfection satisfies:

Lkul3=2 ¼ Gl ð33Þ

To solve this problem, it is convenient to use the Fourier transform. Generally, Eq. (33) has no localized

and smooth solution. To overcome this difficulty, we assume that these solutions are discontinuous at

x ¼ 0, this means that from the point of view of asymptotic analysis, in the case of a localized imperfection,
we solve the non-linear problem by using two different expansions of the generalized displacement u or of
its derivatives in the region x < 0, X < 0 and in the region x > 0, X > 0. Hence, any quantity in these
asymptotic expansions can admit the possibility of discontinuities at x ¼ 0 and X ¼ 0, but the generalized
deflection u, slope du=dx, moment d2u=dx2 and shear d3u=dx3 must be continuous at x ¼ 0 and X ¼ 0. These
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continuity conditions lead to continuity conditions on the un and their derivatives. Then Eq. (33) is written
in Fourier spectral space in the form below:

LðxÞûul3=2ðx; yÞ ¼ Sðx; yÞ ð34Þ

where

LðxÞ ¼
k2 x2 � o2

oy2

� �2
� kcx2 qx2

�qx2 x2 � o2

oy2

� �2
2
64

3
75 ð35Þ

is the operator of the problem in Fourier space. The right-hand side Sðx; yÞ of (34) is a vectorial complex
function depending on localized imperfections and the discontinuities of ul3=2 and their derivatives at x ¼ 0.
As the operator LðxÞ is singular for x ¼ c, x ¼ b2c and x ¼ cð1þ b2Þ, then Eq. (34) has a localized

solution if and only if its right-hand side satisfies three solvability conditions:

hSðx; yÞ; V �
i i ¼ 0 ði ¼ 1; 2; 3Þ ð36Þ

These solvability conditions lead to the following discontinuous derivatives of the envolopes aðxÞ, bðxÞ,
cðxÞ at x ¼ 0 (see Jamal et al., 1999):

a0ð0Þ ¼ � kc
ffiffiffiffiffiffi
2p

p

4k2pRð1� b2Þ2
al

Z 2pR

0

ĝgðc; yÞ cos bcy dy

b0ð0Þ ¼ � kc
ffiffiffiffiffiffi
2p

p

8k2pR
al

Z 2pR

0

ĝgðcð1þ b2Þ; yÞdy

c0ð0Þ ¼ � kcb
4
ffiffiffiffiffiffi
2p

p

4k2pRð1� b2Þ2
al

Z 2pR

0

ĝgðb2c; yÞ cos bcy dy

ð37Þ

Thus the equilibrium equations (1) and (2) are replaced by the three non-homogeneous coupled non-linear

differential equations (29)–(31) and the jump relations (37) which allows one to account for spatial vari-

ations of the amplitudes and for the influence of localized and distributed imperfections. These equations

will be used in the next section to predict the reduction of the critical load.

4. Numerical predictions of the reduced buckling load

It seems that, the amplitude differential equations (29)–(31) have no closed form solutions, as it was the

case for one mode analysis (Abdelmoula et al., 1992). Hence, these equations coupled with the boundary

conditions (37) have to be solved by a numerical method. Solving this simplified numerical model is much

less expansive than solving a complete cylindrical shell model. Nevertheless, in order to establish the range

of validity of the amplitude equations (29)–(31), we have carried out such a finite element shell model within

the general code Abaqus and within INCA, that is a specific code for shells of revolution.

Finally, we shall present a few results from the simplified model in order to distinguish the influence of

various types of coupled imperfections on the buckling strength of the structure.

4.1. Methodology

For the example considered in this study, the geometry is characterized by a radius of 100 mm and a shell
thickness of 0.247 mm. Material properties are described by the Young modulus E ¼ 198000 MPa and the
Poisson�s ratio m ¼ 0:3. Cylinder length is deduced from the Batdorf parameter Z ¼ L2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

p
=Rh ¼ 1000,
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which leads to L ¼ 160:9 mm. For the proposed shell, a linear analysis gives a critical load of
kc ¼ 2qk ¼ h=R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� m2

p
Þ which means that the collapse of the cylindrical shell occurs for a limit pressure

of Pc ¼ Ehkc ¼ 73:11 N/mm.
Let us note that this choice of the test geometry and of a large Z is consistent with the linear pre-buckling

assumption. We have chosen a large Z because the effects of non-linear pre-buckling rotations is a bit
stronger for short specimens and therefore our simplified model is less accurate in the latter case. Probably

a simplified model coupling the amplitude equations (29)–(31) with these effects would be too intricate for a

result of little significance.

For the critical load Pc, all modes located on the Koiter circle are solutions of the linear problem without
imperfections. Among all these modes, we have selected three: mode A ¼ cosðcxÞ cosðbcyÞ; mode B ¼
cosðcð1þ b2ÞxÞ and mode C ¼ cosðcb2xÞ cosðbcyÞ, with b ¼ 1:91 and c ¼ 0:07, which corresponds to a
number of circumferential waves n ¼ 15 for the modes A and C and to the axisymmetric one (mode B) (see
Hunt and Neto, 1991).

To make easier the discussion, a specific form of the localized imperfection is chosen as follows:

glðx; yÞ ¼ exp
�
� x

C

� �2�
½dA cos cx cos bcy þ dB cos cð1þ b2Þxþ dC cos cb

2x cos bcy� ð38Þ

where C > 0 is the width of the region where the localized imperfection lies and dA; dB; dC are real coeffi-
cients linked as jdAj þ jdBj þ jdCj ¼ 1. Nevertheless, according to (37), any shape of localized imperfection is
admissible. With the specific choice (38), one obtains analytically the expressions of derivatives of the

envelopes in (37). These can be written simply in the form below:

da
dx

ð0Þ ¼ aldA;
db
dx

ð0Þ ¼ aldB;
dc
dx

ð0Þ ¼ aldC ð39Þ

where al is the imperfection amplitude and dA, dB and dC are given as follows:

dA ¼ � kc
ffiffiffi
p

p
C

8k2ð1� b2Þ2
dA½1

(
þ expð � c2C2Þ� þ dC exp

 "
� cð1þ b2ÞC

2

� �2!

þ exp
 

� cð1� b2ÞC
2

� �2!#)
ð40Þ

dB ¼ � kc
ffiffiffi
p

p
C

8k2
dB½1þ expð�ðcð1þ b2ÞCÞ2Þ� ð41Þ

dC ¼ � kc
ffiffiffi
p

p
C

8k2ð1� b2Þ2
dA exp

 "(
� cð1þ b2ÞC

2

� �2!
þ exp

 
� cð1� b2ÞC

2

� �2!#

þ dC½1þ expð�c2b4C2Þ�
)

ð42Þ

Distributed imperfection is considered in the form given by Eq. (32). Influence of this defect on the

reduced buckling load is accounted by the right-hand side of the system (29)–(31).

Our aim is to obtain the reduction of the critical load of the compressed cylindrical shell in presence of

localized and/or distributed imperfections. For this purpose, we perform a variational formulation and a
finite element discretization by using one-dimensional element in x-direction to solve the three ordinary
differential equations (29)–(31) with the boundary conditions (39). An iterative algorithm of Newton
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Raphson allows us to follow the non-linear branch kða; b; cÞ for different values of al and ar. The maximum
value of k is obtained by reading the response curve.
The results obtained by this simplified method are compared with those obtained by using two finite

element codes. Now, let us describe how reduced load is computed by using Abaqus. In this analysis we
start from a variational formulation of 3D shell mechanics instead of Donnell equations (1) and (2). To

compute the load limit for which the collapse occurs, we perform an incremental load–deflection analysis by

using the modified Riks method available in Abaqus code.

The buckling mode leads to a displacement pattern with n circumferential waves and m longitudinal ones.
The lowest critical load is characterized by specific values of n and m. To predict the critical load, one can
model the whole cylinder requiring a fine mesh, but this approach is computationally very expensive.

Because of the problem symmetry, we only need to model a part of the shell. Here we shall mesh a half

circumferential wave and impose the symmetry conditions. Hence, several analyses are needed to determine
which combination ðn;mÞ gives the lowest critical load. Generally, we shall prefer this less expansive
analysis than the one involving the whole cylinder discretization.

In our case the critical mode requires 15 waves in the circumferential direction. We then use 10 eight node

shell elements in the circumferential direction and 41 elements to model the half cylinder length. So, this

mesh involves only 6665 degrees of freedom. On the radial edges, symmetry conditions are imposed and

loaded cylinder ends are simply supported. To model correctly the localized imperfection, we meshed finely

the middle of the cylinder length (see Figs. 3 and 4). Localized and distributed imperfections are introduced

directly in the initial geometry of the shell. To predict a load limit in this way, Abaqus requires about 30 mn
CPU time.

Figs. 3–5 describe respectively the modelized mesh, localized and distributed imperfections considered in

the present study.

Note that Abaqus has been widely used by the shell buckling research community, see for instance Kim

and Kim (2002) and Teng and Song (2001). A convergence study has been presented in Kim and Kim

(2002) with the S8R shell element offered in Abaqus. It has been established that accurate solutions, in

presence of imperfections, can be obtained with similar meshes as those used in our study.

For completeness, some numerical tests have been also performed with the code INCA (Combescure,
1995), that is based on Fourier series and on one-dimensional finite element. Within INCA, the perfect

Fig. 3. Description of the modeled geometry and its discretization.
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geometry is discretized, the imperfection is accounted by appropriate terms in the equations as in (1) and (2)

and it is expanded into Fourier series. Only four harmonics 0, n, 2n and 3n will be needed.

4.2. The typical response curve of the axially compressed cylinder

Now we present the typical behaviour of cylindrical shells subjected to an axial compression (Fig. 6). The

example chosen for this purpose takes into account only distributed imperfection in the form of Eq. (32)

with da ¼ db ¼ 1=2 and dc ¼ 0. Different response curves are then obtained for different values of the
amplitude ar=h. Fig. 6 reporting the load–deflection curves shows that for small values of ar=h, we have an

Fig. 4. Meshing and description of the localized imperfection.

Fig. 5. Description of distributed imperfection.
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abrupt slope change. This behaviour is smooth for large values of the imperfection amplitude. When ar is of
the order of the thickness, there is no longer load limit and the load–deflection curve is always increasing.

4.3. Influence of localized imperfection

Fig. 7 shows the influence of a localized imperfection. It reports the normalized maximum load kmax=kc
versus the size of the localized imperfection al=h. This imperfection is the one described in Fig. 4 and it is
given by Eq. (38) with C=R ¼ 0:005 and dA ¼ dB ¼ dC ¼ 1=3. A comparison of the results obtained by the
proposed method and those given by Abaqus is presented. As an example, for an amplitude of localized

imperfection al ¼ h, we obtain a reduction of 30% for the buckling load (kmax=kc ¼ 0:7). The comparative
study shows that results given by the simplified method are in agreement with those of Abaqus until a

reduction of 40% of the buckling load (kmax=kc ¼ 0:6). This analysis shows the great sensitivity of the
chosen cylindrical shell to localized imperfections. A localized defect with C ¼ 0:5 mm and al ¼ 1:4 h re-
duces the critical load of about 40%; that is to say, the imperfect cylinder collapses for a pressure
Pmax ¼ 0:6Pc ¼ 43:86 N/mm.
Note that the simplified method is not able to provide accurate results for very small amplitudes of

imperfections. Indeed it is known that, in this case, the buckling mechanism is influenced by boundary

effects (Yamaki, 1984), that are disregarded in the simplified analysis. To illustrate this phenomenon, we

made a calculation with a small imperfection size (al=h ¼ 0:1). The deformed shape at the ultimate load is
presented in Fig. 8 and a post-critical shape in Fig. 9. At the maximal load, two instability mechanisms are

present: one sees both a wavy buckle in the region of the localized imperfection and the classical axi-

symmetric pre-buckling deflection close to the boundary. In the post-buckling range, one recovers about the
classical mode without imperfections, that is wavy and focused near boundary.

Fig. 6. Load–deflection curves for different perturbation values.
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4.4. Influence of distributed imperfection

In Figs. 10 and 11, we report the influence of only the distributed imperfection geometry on buckling load

by plotting kmax=kc versus ar=h. The defect is described in Fig. 5 and given by Eq. (32) with da ¼ db ¼ 1=2
and dc ¼ 0 in the case of Fig. 10 and da ¼ db ¼ dc ¼ 1=3 in the case of Fig. 11. The comparative study
between results obtained by the proposed method and Abaqus is shown on the graphs. In the case of

imperfection of Fig. 10 which has no component on mode C, by considering the amplitude ar ¼ 0:1 h,
Abaqus predicts a reduction of the critical load kmax=kc ¼ 0:61 (Pmax ¼ 44:59 N/mm), and the proposed
method gives kmax=kc ¼ 0:55 (Pmax ¼ 40:21 N/mm) with a relative error of 10%. For an amplitude ar ¼ 0:05
h, the reduction of the critical load is kmax=kc ¼ 0:7 and the relative error is only of about 4%. For a
distributed imperfection taking into account three modes, our method gives satisfactory results by com-

parison with Abaqus until a reduction kmax=kc of about 0.7. Discrepancy between the two curves appears
for large values of ar=h.

Fig. 7. Localized imperfection: C=R ¼ 0:005, dA ¼ dB ¼ dC ¼ 1=3.

Fig. 8. Deformed shape for the ultimate load. Localized imperfection: C=R ¼ 0:005, dA ¼ dB ¼ dC ¼ 1=3, al=h ¼ 0:1.
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For very small amplitudes of imperfections, the reference load–defect curve has a different behaviour
according to the type of the imperfection. In a case, the maximum loading tends to the load of Donnell kc;
in the other case, it tends to a value of about 0.84kc, which is in agreement with a bifurcation analysis from
a non-linear branch realized by Yamaki (1984). The corresponding modes are represented in Figs. 12 and

13 and they are in coherence with the maximum load obtained. In the case of Fig. 12, we obtain a mode

almost axisymmetric and distributed on all the shell: it is similar to those predicted by classical analytical

computation leading to Donnell loading kc ¼ 1. In the case of Fig. 13, the mode is periodic (n ¼ 15) in the
circumferencial direction and, in the axial direction, it is localized near the edges as obtained by Yamaki:

note that these instability modes are initiated by circumferential stresses in the neighbourhood of the edges
and that for a simply supported cylinder, they reduce the critical load by about 15%. These two curves are

different according to the imperfection form, but in the two cases, this imperfection is generic and includes a

periodic part. So, in both cases, the technique of following non-linear branches should lead to the lowest

Fig. 9. Deformed shape for the post-critical load k=kc ¼ 0:57. Localized imperfection: C=R ¼ 0:005, dA ¼ dB ¼ dC ¼ 1=3, al=h ¼ 0:1.

Fig. 10. Distributed imperfection: da ¼ db ¼ 1=2, dc ¼ 0.
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critical load, that is to say to a mode localized near the edges as shown in Fig. 13. The numerical prediction

obtained in Fig. 10 is not in conformity with the latter analysis, but remember that there are many coinci-

dent modes in the proposed buckling problem and then many solutions branches exist in the studied
region: hence, it is not surprising that the computational strategy does not allow us to follow effectively the

solution branch for a very small imperfection amplitude. On the other hand, the simplified method pro-

posed in this article gives a value kmax of the order of kc for a very small imperfection amplitude that is
consistent with the fact that this method does not take into account the effect of boundary conditions.

4.5. Interaction of localized and distributed imperfections

In Fig. 14 the interaction between localized and distributed imperfections is considered. Indeed, we have
performed the computation using the following parameters: dA ¼ dB ¼ 1=2, dC ¼ 0, da ¼ db ¼ dc ¼ 1=3 and

Fig. 11. Distributed imperfection: da ¼ db ¼ dc ¼ 1=3.

Fig. 12. Deformed configuration, distributed defect: da ¼ db ¼ 0:5, dc ¼ 0, ar ¼ 0:0005, Pmax=Pc ¼ 0:985.
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ar=h ¼ 0:02. We report in this figure the reduced load kmax=kc versus al=h for non-zero values of ar=h. In this
case, we have used two reference codes: Abaqus, that is based on three-dimensional shell elements and

INCA, that is based on Fourier series and that is specially designed to account for geometric imperfections.

There is no significant differences between the two codes (see Fig. 14): this validates the methodology to

represent the imperfections in the codes. Note that we have also computed this reduction curve by meshing

a half cylinder in height: the results are exactely the same as those obtained by representing a half wave in

circumferential direction. Once more, the proposed method gives satisfactory results until a reduction of

30% of the critical load. For a reduction of 40% in the buckling load, a relative discrepancy of about 10%

appears between the two methods.
In Fig. 15 are reported several curves by considering the interaction between the two imperfection types.

Here only results of the proposed method are drawn. The following parameters are chosen for the com-

putation: Z ¼ 1000, C=R ¼ 0:005, dA ¼ dB ¼ 1=2, dC ¼ 0, da ¼ db ¼ dc ¼ 1=3.

Fig. 14. Interaction of distributed and localized defects: C=R ¼ 0:005, dA ¼ dB ¼ 1=2, dC ¼ 0, da ¼ db ¼ dc ¼ 1=3, ar=h ¼ 0:02.

Fig. 13. Deformed configuration, distributed defect: da ¼ 0, db ¼ dc ¼ 0:5, ar ¼ 0:0005, Pmax=Pc ¼ 0:840.
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Let us analyse the interaction between the two types of imperfection by considering an example. When

ar=h ¼ 0 and al=h ¼ 1, only localized imperfection is taken into account, the reduction of the critical load
given by the simplified method is kmax=kc ¼ 0:67. By considering only distributed imperfection with
ar=h ¼ 0:02 and al=h ¼ 0, the reduction of load is of kmax=kc ¼ 0:80. Now, by taking into account the in-
teraction of both localized and distributed imperfections (ar=h ¼ 0:02 and al=h ¼ 1:), the load reduction is
given as kmax=kc ¼ 0:63. Hence, a very small distributed imperfection (for instance ar=h ¼ 0:02) has an
effective influence, which is what was expected. But this influence is much more significant if this imper-

fection is alone than if it is combined with a rather large localized imperfection.

For a fixed small value of ar=h ¼ 0:005, curve of Fig. 15 shows a drop in load limit from 0.85 for

al=h ¼ 0:2 to 0:63 for al=h ¼ 1. That is to say a drop of 25% of the load limit. For a large value of ar=h, for
example 0.1, this drop of load limit is reduced to 14%. Therefore, a given localized imperfection has a

stronger influence if it is alone or combined with a small distributed imperfection than if it is combined with
a large distributed imperfection.

Therefore, it appears that a given imperfection induces a greater reduction of strength when it is alone

that when it is combined with another large imperfection.

5. Conclusions

In this work, we have shown how to take into account the interaction between localized and distributed

imperfections by solving a reduced problem deduced from a double scale perturbation technique including

three modes interaction. This analysis confirms the great sensitivity of cylindrical shells under axial com-

pression in the presence of both localized and distributed imperfections. The results obtained by the pro-

posed method have been compared with those obtained by classical finite element codes, that are based on

various discretization principle. This comparative study establishes that the proposed method gives satis-

factory results up to 30–40% of the reduction of the buckling load.

Localized imperfection has a weaker influence on the reduced buckling load by comparison with the
distributed imperfection.

Fig. 15. Interaction of distributed and localized defects: C=R ¼ 0:005, dA ¼ dB ¼ 1=2, dC ¼ 0, da ¼ db ¼ dc ¼ 1=3.
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Incidentally, a comparison has been performed between a generic three-dimensional shell code and a

specific code for shells of revolution. The coherence of the results establishes once more the high reliability

of these numerical tools to predict the buckling of imperfect shells.
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